Class numbers of some abelian extensions of rational function fields

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Class numbers of some abelian extensions of rational function fields

Let P be a monic irreducible polynomial. In this paper we generalize the determinant formula for h(K Pn) of Bae and Kang and the formula for h−(KPn ) of Jung and Ahn to any subfields K of the cyclotomic function field KPn . By using these formulas, we calculate the class numbers h −(K), h(K+) of all subfields K of KP when q and deg(P ) are small.

متن کامل

Class Numbers of Imaginary Abelian Number Fields

Let N be an imaginary abelian number field. We know that hN , the relative class number of N , goes to infinity as fN , the conductor of N , approaches infinity, so that there are only finitely many imaginary abelian number fields with given relative class number. First of all, we have found all imaginary abelian number fields with relative class number one: there are exactly 302 such fields. I...

متن کامل

extensions of some polynomial inequalities to the polar derivative

توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی

15 صفحه اول

Efficient Computation of Class Numbers of Real Abelian Number Fields

Let {Km} be a parametrized family of real abelian number fields of known regulators, e.g. the simplest cubic fields associated with the Q-irreducible cubic polynomials Pm(x) = x −mx2 − (m+ 3)x− 1. We develop two methods for computing the class numbers of these Km’s. As a byproduct of our computation, we found 32 cyclotomic fields Q(ζp) of prime conductors p < 10 for which some prime q ≥ p divid...

متن کامل

On the computation of class numbers of real abelian fields

In this paper we give a procedure to search for prime divisors of class numbers of real abelian fields and present a table of odd primes < 10000 not dividing the degree that divide the class numbers of fields of conductor ≤ 2000. Cohen–Lenstra heuristics allow us to conjecture that no larger prime divisors should exist. Previous computations have been largely limited to prime power conductors.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 2003

ISSN: 0025-5718,1088-6842

DOI: 10.1090/s0025-5718-03-01528-x